# Exam Lie Groups in Physics 

Date November 4, 2020<br>Time 8:30-10:30<br>Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- All subquestions (a, b, etc) of the three exercises have equal weight
- Illegible handwriting will be graded as incorrect
- Good luck!


## Problem 1

(a) Consider the sets of complex numbers $C$ and nonzero complex numbers $C \backslash\{0\}$. Indicate the composition laws under which these sets form Lie groups. Explain your answers and explain why subtraction cannot be a composition law.
(b) Consider the group $S U(1,1)$ formed by the complex $2 \times 2$ matrices $U$ with determinant equal to 1 that satisfy

$$
U^{\dagger}=g U^{-1} g^{-1} \quad \text { with } \quad g=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Give a parametrization of all the elements of $S U(1,1)$ and show that the set of those matrices indeed form a group under matrix multiplication.
(c) Explain what are the difference between $S U(1,1)$ and $S U(2)$ in terms of global properties (compact/connected/simply connected) and local properties (Killing form/Cartan matrix).

## Problem 2

Consider the lie algebra $s u(n)$ of the Lie group $S U(n)$ of unitary $n \times n$ matrices with determinant equal to 1 .
(a) Decompose the following direct product of irreps of the Lie algebra $s u(n)$

into a direct sum of irreps of $s u(n)$, in other words, determine its Clebsch-Gordan series.
(b) Write down the dimensions of the irreps appearing in the obtained decomposition for $s u(n)$ with $n$ equal to the first digit of your student number plus 1 . For example, if your student number is s2345678, then $n=3$ ). Indicate inequivalent and complex conjugate irreps whenever appropriate.
(c) Write down the direct product between the defining representation $\boldsymbol{n}$ of $s u(n)$ and its complex conjugate $\boldsymbol{n}^{*}$ in terms of Young tableaux and decompose it into irreps of $s u(n)$. Use this decomposition to show that the adjoint representation is real.

## Problem 3

Consider the Lie group $O(4)$ of orthogonal transformations in 4-dimensional Euclidean space and its subgroup $S O(4)$ of elements with determinant equal to 1 .
(a) Determine the dimension of $O(4)$, by considering the constraints that need to be satisfied by its generators $M_{a b}$ in the defining representation ( $a, b=1,2,3,4$ ).

The generators span the Lie algebra $o(4)$ of $O(4)$. The generators defined as $L_{i}=\frac{1}{2} \epsilon_{i j k} M_{j k}$ and $K_{i}=M_{i 4}(i, j, k=1,2,3)$, satisfy the following algebra

$$
\left[L_{i}, L_{j}\right]=i \epsilon_{i j k} L_{k}, \quad\left[L_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=i \epsilon_{i j k} L_{k}
$$

(b) Show explicitly that $o(4) \cong s o(4)$ and $s o(4) \cong s o(3) \oplus s o(3)$.
(c) Write down the expressions for the two Casimir operators of $o(4)$ in terms of the generators.
(d) Describe the general use of Casimir operators.

